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The Gibbs Sampler algorithm has proven useful for the integration of multiple-point statistics in 
geostatistical realizations of discrete variables.  Iterative simulation methods such as the Gibbs Sampler 
have advantages such as speed and ease of simulation, as local data need not be searched for and systems 
of equations may be solved once and the solutions retained.  However, these iterative approaches are 
heuristic; the methods are used because they work, with less emphasis placed on why they work.  This 
paper explains the statistical underpinnings of iterative simulations utilizing a Gibbs sampler, including: 
viewing simulated realizations as random variables (or fields); the concept of exploration of the state space 
of a problem; and convergence of Markov chain Monte Carlo methods to the stationary joint distributions 
of complex variables. 

Introduction 

Geostatistical simulation methods have become more sophisticated in recent years, moving from local 
estimation to joint simulation and accounting for multiple sources of data and increasingly complex spatial 
statistics. One factor holding back development of some methods is computational time required for 
simulating a large number of realizations. A possible solution that has been explored is the use of iterative 
simulation methods rather than sequential; while sequential methods require searches for nearby data and 
calculation of new conditional distributions at every location, iterative methods have the advantage of 
knowing the surrounding grid locations are fully informed and not having to re-solve sets of equations at 
every point. These speed advantages can often offset the fact that iterative simulation must visit each 
location many times. 

Although the benefits of a sequential simulation framework are relatively easy to explain, the idea that an 
iterative simulation can be valid may be more difficult to understand. This paper will explain the theoretical 
underpinnings of iterative simulation in geostatistics and the relations to standard and well-known 
statistical resampling techniques. 

Joint Uncertainty 

Early use of geostatistical methods focused on estimation of unknown variables; this lead to the 
development of kriging and related approaches. Simulation was attractive early on because of the 
honouring of the variogram and removal of the smoothing effect of kriging; however, it was not until the 
1980s and 90s that computers became powerful enough to make simulation a feasible tool. 

While estimation allows the determination of “best” local distributions for unsampled locations, the global 
heterogeneity is not properly honoured. Each estimate is its own entity, unrelated to the rest. This allows 
calculation of such interesting properties such as local mean and variance, probability to be above or below 
a threshold, and probabilities of different facies at a location. However, these local estimates, when taken 
together, do not properly represent the global input statistics (Deutsch, 2002). 

In order to properly characterize unknown joint distributions such as global tonnage and grade above a 
cutoff, effective permeability of a field, or connectivity of certain facies, simulation is required. Important 
response characteristics may then be determined by flow simulation, dig limit optimization, or other such 
production predicting methods. It is not possible to directly predict any of these values, as they are 
functions of the entire simulated field which may be comprised of several million cells. Simulation allows 
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an approximation of the distributions of response characteristics by sampling from the joint distribution; all 
realizations are deemed equally probable and representative of the underlying spatial structure. By 
honouring the attributes of the geologic phenomena that may be modeled, the realizations generated may 
then be used to determine the uncertainty in the complex responses. 

State Spaces 

In statistics, a state is a set of variables with given values. For example, a set X with two variables a and b 
may be expressed as: 

 { },X a b=  (1) 

So if a and b are fixed then X represents a single state. In this case X may be viewed as a two-dimensional 
random variable with components a and b. A state space is then the set of all possible values for a random 
variable; in the case of X, this is all values on a two-dimensional plane. For higher-dimensional variables 
the number of possible states increases geometrically. A common state space to consider in geostatistics is 
all possible linear estimation weights; the kriging weights are a particular state within this space. Because 
states may be viewed as random variables within their space, it follows that functions may be defined 
dependent on these variables. Following with the estimation weights example, the estimation error variance 
is one such function and the kriging weights are the state at which this function is minimized. 

In geostatistical terms, one random variable that may be considered is the combination of the values at all 
locations in the model; if there are nxyz (unsampled) locations then this variable is of dimension nxyz. The 
state space for the model is every combination of values for all locations. If there are K values any given 
location may take then there are Knxyz states in the space of the model. Note that the values for a single 
location will be discussed as in the discrete case, i.e. facies models; however, this applies in the continuous 
case for all practical purposes as only so many decimal places are carried and this limits the possible 
values. The information which is to be inferred from the models may be defined as functions on the state 
space of all possible values; this information could be local proportions, grade above cutoff, flow 
simulation results, resource in place, or any other response characteristic. Each state (possible configuration 
or realization) has its own set of responses. 

Given the geometric nature of the space, there are a huge number of states. Even for a low number such as 
K=3 and a small model with nxyz=100,000, there are over 1047,000 states. This number may seem 
excessively large but the important property is that there are a finite number of states. The finite nature of 
the problem gives several important properties: there are some states with probability greater than zero; the 
sum of the probabilities of all states is equal to one; and, given some prior knowledge such as a variogram 
or histogram the vast majority of the states will have a probability equal to zero. The goal of geostatistical 
simulation is to sample from the probability distribution of this state space in an unbiased way, while 
honouring both the probability of each state (the likelihood function) and the available data (prior 
knowledge). 

Most of the states which have similar simple statistics such as the variogram will be quite similar in 
behaviour and response characteristics. Because of this, a small number (about 100) realizations is usually 
enough to characterize the distribution of response characteristics. While a totally random field is a faint 
possibility, this is highly unlikely and therefore has an extremely low likelihood (probably equal to zero in 
most cases) and its response characteristics may be ignored. Most other states may be ignored in this way 
as well. Only those realizations which are simulated are assumed to have a high likelihood, and therefore 
contain a large proportion of the weight of the likelihood function. Sampling from the distribution of the 
state space is sufficient. 

Markov Chain Monte Carlo 

Markov chain Monte Carlo methods are a family of statistical algorithms which are used to sample from 
distributions too complex to express analytically (Robert and Casella, 2004). The basis for MCMC 
algorithms is the Markov chain, which is a string of variables that has the following property: 
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A Markov chain explores a state space by stepping from one state, Xi-1, to another, Xi, within the state space 
of the variable with some defined probability. In words, Equation 2 means that the next step in a Markov 
chain depends only on the current state; that is, how the chain arrived at Xi-1 is irrelevant. This is called the 
Markov property. The simplest example of a Markov chain is the random walk. This algorithm simply adds 
a random value (possibly negative) to the chain at each step. An example of this is shown in Figure 1. 

Four Random Walk Markov Chains
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Figure 1: Example of a random walk Markov chain. At each time increment the chain steps up or down by 
one with equal probability. 

A very useful property of Markov chains is that they will converge to stationary distributions after some 
time. For the random walk shown in Figure 1, the values of a walk as time increases will tend to return 
towards zero; however, not all of the walks will return at the same rate. This causes many walks (or 
realizations) taken together to have a Gaussian distribution (Lawler, 2006), even though this distribution 
was never used in the actual simulation. 

Other, more sophisticated, MCMC algorithms are used for characterizing more complex distributions. The 
slice sampler (Robert and Casella, 2004) resamples components of multi-dimensional variables while 
keeping the others frozen, utilizing only one-dimensional sampling; the Metropolis-Hastings algorithm 
(Metropolis et al, 1953) uses an accept-reject criterion to cause the Markov chain to “move” towards states 
with higher probability; simulated annealing (Deutsch, 1992) is a variant of Metropolis-Hastings which 
uses an objective function to characterize “good” and “bad” steps; and the Gibbs sampler (Geman and 
Geman, 1984; Casella and George, 1992) uses conditional probabilities to approximate a sample from the 
full joint distribution of a variable. 

Simulated annealing is the primary MCMC technique which has been explicitly applied in geostatistical 
use. The Gibbs sampler, which will be discussed further here, has been applied implicitly by numerous 
techniques; the Gibbs sampler is the statistical basis for what most practitioners would think of as an 
iterative simulation method. 



114-4 

The Gibbs sampler uses the conditional distributions of multiple variables to move from one state to the 
next. For example, the state space of a chain made up of two variables X and Y would be explored using the 
conditional distributions 

 ( )1|i ix f x y −=  and ( )|i iy f y x=  (3) 

For two variables which are bivariate normal, X and Y would be repeatedly resampled from the conditional 
distributions 
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An example of the first two steps in the Markov chain for a bivariate normal variable is shown in Figure 2. 
This Gibbs sampler converges very quickly to the stationary joint bivariate Gaussian distribution even 
though this full distribution is never explicitly used. 

 
Figure 2: Example of the Gibbs sampler for a pair of bivariate normal variables. 

 

For a higher-dimensional variable, X(i), i=1,…,N, sample Xt+1
(i) from the distributions 

( )ijXXf ji ≠,| )()( . This process leads the algorithm to explore the state space of the random variable, 
with preference to the higher-probability regions. Therefore, running this Markov chain many times is 
equivalent to sampling from the joint distribution of the variables which make up X; with enough samples 
the properties of the joint distribution may be determined. 

In this way, a simulation of nxyz variables may be performed which honours the joint distribution of all 
variables, but does not explicitly require the joint to be known. Only the full conditional distributions are 
relied upon, and the Markov chain will converge to the stationary joint distribution. 

In cases where there is some prior information (such as well logs or sample drillholes) the hard data may be 
honoured by leaving the corresponding variables frozen in place. Soft data may be honoured by modifying 
the conditional distributions locally to correspond to what is known. The full joint distribution will then be 
the likelihood function of the random variable updated with the prior information. 
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Markov Random Fields 

The Gibbs sampler is a very powerful tool for determining unknown joint distributions while accounting 
for inferred spatial statistics and measured information. However, the Gibbs sampler requires the “full” 
conditional distributions in order to converge to the joint distribution. The conditional distributions are of 
dimension nxyz – 1 and are therefore only slightly less complex than the joint, and even if the conditional 
distribution may be defined, such as through kriging, it may not be feasible to solve the system. In this case 
the theory Markov random fields may be used. 

The idea behind a Markov random field is to utilize the Markov property spatially. In sequences such as 
that shown in Equation 2, the random variables which make up the chain have the Markov property and are 
therefore independent of all previous values in the chain except for the immediately preceding one; this 
preceding value may be viewed as the “neighbour” in the chain. Markov random fields use this same 
concept, except instead of being dependent on a neighbour in the dimension of time the variable being 
simulated is dependent on some set of neighbours in space. This interpretation of the Markov property is 
demonstrated below: 

 
Figure 3: Example of a Markov random field. 

In Figure 3, i is the variable being simulated; ∂i is the local neighbourhood of variables around i; and A is 
the entire set of spatial variables. The mathematical form of the Markov property is then: 

 ( ) ( )| , , | ,i i j j i i j jP X x X x j A j i P X x X x j i= = ∈ ≠ = = = ∈∂  (5) 

Similar to the Markov property in Equation 2, the distribution of Xi may be determined using only a subset 
of the available information. This property is used extensively in geostatistics even if it is not known 
explicitly. The main use of Markov random fields is in limiting search radii when looking for data for 
kriging or simulation; rather than using all available data, only those within some reasonable range are 
considered. For a Gibbs sampler of high dimension, the full conditional distributions may be simplified to 
conditionals considering just the information within a reasonable limit (Gelfand and Smith, 1990). This 
limited search will then simplify the conditional distributions to something which may be used more 
practically. 

Iterative Geostatistical Simulation 

There have been numerous implementations of iterative simulation methods in geostatistics, based on 
theoretical, heuristic, and image processing techniques. Simulated annealing (Deutsch, 1992) is widely used 
as an optimization method for maximizing or minimizing a defined objective function. Differences from 
target statistics (such as the variogram) may be used as the objective function for simulation of mineral 
deposits. If the objective function is assumed to be representative of the likelihood function of the random 
field, then simulated annealing explores the state space of the problem in an unbiased way and is 
theoretically applicable both as a statistical method as well as an optimization approach. 
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The Gibbs sampler has been applied in geostatistics (Srivastava, 1992), although this approach was mostly 
from a results-based examination of the problem rather than a theoretical exploration of the space of a high-
dimensional variable. Any iterative method which perturbs an image based on local conditional 
probabilities may be viewed as a Gibbs sampler and the exploration of the state space as outlined above is 
valid, even if this is not an explicit goal of the methodology. 

The relation of earth sciences problems to image processing, pattern recognition, and artificial intelligence 
has been noted before (Caers and Journel, 1998). Neural networks have been explored as a method for 
matching conceptual training images which are representative of the geology under consideration. These 
methods often do not have the aim of statistically exploring the space of the problem, but rather 
reproducing the patterns and statistics seen in the training image. Neural networks may be viewed as Gibbs 
samplers, with the neural network portion of the algorithms being used to calculate the conditional 
distributions. 

Example 

As a demonstration of the concept of exploration of a state space, Figure 4 shows the space for a small two-
by-two grid with black and white values. There are 24 = 16 states in this space. Those states which 
communicate, that is, may be reached from one another in a single step, are connected by lines. For this 
example, kriging is used to calculate the conditional probabilities, with adjacent nodes in the grid having 
correlation ρ = 0.5 and nodes diagonal to one another having correlation ρ = 0.2. The kriging system is the 
same for all states and is shown in Equation 6. 

 
Figure 4: A state space of a simple, 2x2 grid with two possible values. 
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 (6) 

Solving this system, λ1 = -0.3714, λ2 = 0.5714, and λ3 = 0.5714. The global proportions used are 0.6 for 
black and 0.4 for white. Because the state space in the example is such a small size the likelihood of each 
state may be solved analytically; alternatively, a Gibbs sampler may be used, starting from any state, and 
exploring the space for some number of iterations. To account for a conditioning point, the state space may 
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be constrained: Figure 5 shows the same state space for only those states which have white values in the 
upper left node. 

 
Figure 5: The same state space as in Figure 4, with a conditioning point in the upper location. 

 

The case in Figure 5 may again be solved analytically due to the limited scope of the problem. For these 
examples, the Gibbs sampler produces results which exactly match the true distributions. The limiting 
distributions for the Gibbs samplers are shown in Table 1. 

Table 1: The limiting distributions of Gibbs samplers exploring the state spaces in Figures 4 and 5. 
Class Fig 4 Fig 5 

1 0.0721 0.1885 
2 0.0369 0 
3 0.0369 0.087 
4 0.0751 0 
5 0.0369 0.087 
6 0.0751 0 
7 0.0031 0.0083 
8 0.0637 0 
9 0.0369 0.1044 
10 0.0031 0 
11 0.0751 0.1888 
12 0.0637 0 
13 0.0751 0.1888 
14 0.0637 0 
15 0.0637 0.1471 
16 0.2185 0 

 

It is notable that those classes with more black facies have larger probabilities than those with more white, 
due to the global distribution; also, the sum of all of the probabilities is exactly equal to one (within 
rounding error). The joint distributions shown in Table 1 are not used in any way in the Gibbs samplers, but 
are the result of the conditional distributions as defined. For other conditional distributions, such as 
multiple-point statistics, the joint distributions would be different and would reflect the choice of 
conditionals. 
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When confronted by much larger problems more typical of resource estimation, analytical solutions are not 
feasible. In these cases, the Gibbs sampler may be used to approximate the global likelihoods, with or 
without conditioning data. 

Practical Considerations 

Markov chain Monte Carlo methods are powerful tools and may be applied in spatial simulation. However, 
there are practical considerations which arise. Honouring of conditioning data can sometimes be 
problematic, and artifacts may appear if the initial state for simulation is inappropriate or if too much 
weight is placed on the simulated values and not enough on the conditioning information. Integration of 
secondary data or multiple data types can complicate the conditional distributions and cause additional 
steps to be required. Also, in earth sciences data the simulations have distinct edges which can cause 
artifacting (Deutsch, 1992) and necessitate either modifications to the algorithm, expansion and trimming 
of the field, or ad hoc corrections. 

Conclusions 

Sampling from the state space of a random field that represents a large geological site can be difficult.  
Using a Markov chain in a Monte Carlo framework to explore the nxyz-dimensional space of the problem 
can be easier in some cases than sequentially simulating individual locations. 
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